Quadratic Reciprocity in Characteristic 2

نویسنده

  • KEITH CONRAD
چکیده

Let F be a finite field. When F has odd characteristic, the quadratic reciprocity law in F[T ] lets us decide whether or not a quadratic congruence f ≡ x2 mod π is solvable, where the modulus π is irreducible in F[T ] and f 6≡ 0 mod π. This is similar to the quadratic reciprocity law in Z. We want to develop an analogous reciprocity law when F has characteristic 2. At first it does not seem that there is an analogue: when F has characteristic 2, every element of the finite field F[T ]/π is a square, so the congruence f ≡ x2 mod π is always solvable (and uniquely, at that). This is uninteresting. The correct quadratic congruence to try to solve in characteristic 2 is

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Reciprocity in Odd Characteristic

The answer to questions like this can be found with the quadratic reciprocity law in F[T ]. It has a strong resemblance to the quadratic reciprocity law in Z. We restrict to F with odd characteristic because when F has characteristic 2 every element of F[T ]/(π) is a square, so our basic question is silly in characteritic 2. (There is a good analogue of quadratic reciprocity in characteristic 2...

متن کامل

Quadratic Reciprocity for Root Numbers of Gl(2)

Let F be a local/global field. Let E and K be quadratic semisimple F–algebras. Let φ and λ be characters/grössencharacters of E× and K×. We define a local/global symbol ( φ λ ) to be essentially the root number of the representation BCK/F (AIE/F (φ))⊗ λ−1. In the spirit of quadratic reciprocity, we prove that ( φ λ )( λ φ ) = φ(−1)λ(−1). We then derive some consequences of this reciprocity for ...

متن کامل

The Quadratic Reciprocity Law of Duke-hopkins

Circa 1870, G. Zolotarev observed that the Legendre symbol (ap ) can be interpreted as the sign of multiplication by a viewed as a permutation of the set Z/pZ. He used this observation to give a strikingly original proof of quadratic reciprocity [2]. We shall not discuss Zolotarev’s proof per se, but rather a 2005 paper of W. Duke and K. Hopkins which explores the connection between permutation...

متن کامل

Quadratic Reciprocity , after Weil

The character associated to a quadratic extension field K of Q, χ : Z −→ C, χ(n) = (disc(K)/n) (Jacobi symbol), is in fact a Dirichlet character; specifically its conductor is |disc(K)|. This fact encodes basic quadratic reciprocity from elementary number theory, phrasing it in terms that presage class field theory. This writeup discusses Hilbert quadratic reciprocity in the same spirit. Let k ...

متن کامل

An Elementary Proof of the Law of Quadratic Reciprocity over Function Fields

Let P and Q be relatively prime monic irreducible polynomials in Fq [T ] (2 q). In this paper, we give an elementary proof for the following law of quadratic reciprocity in Fq [T ]: ( Q P )( P Q ) = (−1) |P |−1 2 |Q|−1 2 , where ( Q P ) is the Legendre symbol.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006